Indian Statistical Institute Second Semester Examination 2004-2005 M.Math II Year Operator Theory

Time: 3 hrs

Date: 13-05-2005

Answer all questions. They carry equal marks.

1. (a) Let T be a linear operator on a Hilbert space that maps every strongly convergent sequence into a weakly convergent sequence. Prove that T is bounded.

(b) Find the polar decomposition of the operator M of multiplication by a function $\varphi \in L^{\infty}(X,\mu)$ on $L^{2}(X,\mu)$, where (X,μ) is a measure space.

- 2. An operator M consists of multiplication by the function $\varphi(x) = x$ on $L^2[0,1]$, and $T = M \oplus M$ on $\mathcal{H} = L^2[0,1] \oplus L^2[0,1]$.
 - (a) Prove that T has no cyclic vector.
 - (b) There exists a subspace \mathcal{M} of \mathcal{H} such that
 - i) \mathcal{M} is reducing for T,

ii) the map $A \to A_{|\mathcal{M}}$ defines an isometric isomorphism of the algebra \mathcal{W}_T^* to $\mathcal{W}_{T_{|\mathcal{M}}}^*$, where \mathcal{W}_T^* is the weak * algebra generated by T, and

iii) $T_{|\mathcal{M}|}$ has a cyclic vector.

3. (a) What is the spectrum of the multiplication operator M_{φ} acting on $L^{2}[0, 1]$ for φ continuous on [0, 1]?

(b) Prove that the spectrum of a selfadjoint A consists of precisely those points at \mathbb{R} such that $\lambda(a - \epsilon, a + \epsilon) \neq 0$ for any $\epsilon > 0$, where λ is the spectral measure of A.

- 4. Derive the finite dimensional spectral theorem from the continuous functional calculus.
- 5. (a) What is the spectrum of the forward shift?
 - (b) What is the essential spectrum of the forward shift?
- 6. (a) Show that if T is positive then

$$||T|| = \sup \{ \langle T_x, x \rangle : ||x|| = 1 \}$$

(b) Compute the operator norm of a linear transformation $T: \mathbb{C}^2 \to \mathbb{C}^2$.